
Configuring Sakai 11 for SAML
Authentication with ADFS
DRAFT, 5 Jan 2017, Stephen Marquard, stephen.marquard@uct.ac.za

Introduction
Sakai 11 adds support for SAML authentication using Spring Security SAML

(https://jira.sakaiproject.org/browse/SAK-30105).

This example shows how to configure Sakai to use Microsoft ADFS as an Identification Provider (IdP)

for Sakai. This assumes that ADFS is only used to authenticate users in Sakai who already have

accounts in Sakai, i.e. it does not deal with creating accounts dynamically.

This example is based on the installation at the University of Cape Town:

 The ADFS IdP is adfs.uct.ac.za

 The development Sakai 11 system is devslscle001.uct.ac.za

 The production Sakai 11 system is vula.uct.ac.za

These instructions assume that you can build Sakai 11 from source.

Obtain metatadata from ADFS
To start, you need the metadata for the ADFS installation. This may be provided by the ADFS

administrator, or should be accessible via URL, e.g.

https://adfs.uct.ac.za/federationmetadata/2007-06/federationmetadata.xml

Save the metadata file in a location accessible by the Sakai tomcat process. In this example:

/data/sakai/otherdata/saml/federationmetadata.xml

Create keystore with keys for development and production system
To sign metadata and logout requests (which is required by ADFS), SAML requires a keystore with

keys for the development and production system. Create these using the java keytool utility in the

same location as the ADFS metadata:

cd /data/sakai/otherdata/saml/

keytool -genkeypair -alias vuladevkey -keypass changeit -keystore

samlKeystore.jks -keyalg RSA

keytool -genkeypair -alias vulaprodkey -keypass changeit -keystore

samlKeystore.jks -keyalg RSA

Notes:

a. It is essential that the key algorithm used here is RSA. SAML uses the same key algorithm

used in these keys to sign the Logout Requests. These must be signed with RSA-SHA1, as

ADFS does not accept DSA signatures.

b. The development and production systems must have different keys. ADFS will not allow two

separate systems to use the same keys.

mailto:stephen.marquard@uct.ac.za
https://jira.sakaiproject.org/browse/SAK-30105
https://adfs.uct.ac.za/federationmetadata/2007-06/federationmetadata.xml

Configure container login in sakai.properties
For a configuration where users can login via SSO (ADFS) or internally, configure these settings in

sakai.properties (replace “ADFS Login” with a name specific to your institution):

don’t show the user id and password for login on the gateway site

top.login=false

Enable SSO login

container.login=true

login.text=ADFS Login

Second login link (bypasses container auth)

xlogin.enabled=true

xlogin.text=Guest Login

login.use.xlogin.to.relogin=false

Enable the auth choice page. Only set this if container.login=true

login.auth.choice=true

Set the icon or text you want for each. Generally you wouldn't use

both.

container.login.choice.text=ADFS Login

xlogin.choice.text = Guest Login

SAML logout (ADFS) for account types that can authenticate via SSO

loggedOutUrl.staff=/sakai-login-tool/container/saml/logout

loggedOutUrl.student=/sakai-login-tool/container/saml/logout

Add UpnFilter for ADFS username recognition
Add this filter to your login source tree (to be contributed in

https://jira.sakaiproject.org/browse/SAK-32065):

http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-

tool/tool/src/java/org/sakaiproject/login/filter/UpnSamlFilter.java

This filter uses the attribute provided by ADFS with the identifier

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn as the Sakai user name (EID).

Configure login SAML XML files
1. Create two import file entries (one for the development and production system SAML

configurations) in:

login/login-tool/tool/src/webapp/WEB-INF/applicationContext.xml

Example:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!-- Import both dev and production definitions using Spring Profiles -

->

 <import resource="xlogin-context.saml.adfs-prod.xml" />

 <import resource="xlogin-context.saml.adfs-dev.xml" />

https://jira.sakaiproject.org/browse/SAK-32065
http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-tool/tool/src/java/org/sakaiproject/login/filter/UpnSamlFilter.java
http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-tool/tool/src/java/org/sakaiproject/login/filter/UpnSamlFilter.java
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn

</beans>

2. Then configure (in the same directory) xlogin-context.saml.adfs-prod.xml and
xlogin-context.saml.adfs-dev.xml based on this sample
http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-
tool/tool/src/webapp/WEB-INF/xlogin-context.saml.devslscle001.xml

 In profile="devslscle001", replace devslscle001 with a short name for your production and
development systems respectively. This is a Spring profile name which is used to load the
correct SAML profile on startup.

 Replace all references to https://devslscle001.uct.ac.za/with the equivalent URL
prefix for your development / production systems respectively.

 Replace all references to “vuladevkey” with the key names used in the keystore for your
production and development systems respectively.

 Verify that the paths for /data/sakai/otherdata/saml/federationmetadata.xml
and file:/data/sakai/otherdata/saml/samlKeystore.jks are correct.

 Replace the reference to adfs.uct.ac.za as the default IdP to your IdP’s domain name here:

<property name="defaultIDP"

value="http://adfs.uct.ac.za/adfs/services/trust"/>

Build and run development system
Build the modified login module in the development system, and deploy Sakai.

Add the following to your JAVA_OPTS environment variable (typically in the Sakai start script):

-Dspring.profiles.active="devslscle001"

Replacing “devslscle001” with the short name for your development system configured above.

Obtain development system metadata
Once your development Sakai system has started, you can retrieve the auto-generated metadata like

this:

wget https://devslscle001.uct.ac.za/sakai-login-tool/container/saml/metadata

(replacing devslscle001.uct.ac.za with your development system’s FQDN).

With the exception of the certificate data (omitted here for clarity), your metadata should resemble

this:

http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-tool/tool/src/webapp/WEB-INF/xlogin-context.saml.devslscle001.xml
http://source.cet.uct.ac.za/svn/sakai/src_mods/trunk/login/login-tool/tool/src/webapp/WEB-INF/xlogin-context.saml.devslscle001.xml
https://devslscle001.uct.ac.za/with
https://devslscle001.uct.ac.za/sakai-login-tool/container/saml/metadata

Obtain production system metadata
Follow the same process as above, except alter the JAVA_OPTS on your development system to use

the Spring profile name of your production system (e.g. -Dspring.profiles.active="vula").

Retrieve the auto-generated metadata from the development system URL path /sakai-login-

tool/container/saml/metadata and save it as production metadata.

Configure ADFS
Provide the development system and production system metadata files to the ADFS Administrator,

who should then import the metadata files and configure the ADFS trusts appropriately. See the

screenshots in the related doc for examples.

ADFS must provide the UPN in the AuthnResponse to Sakai.

Test login with development system
Click on the “ADFS Login” button on your development system. The sequence of requests should be

(abbreviated):

 Sakai GET /portal/login (302 response)

 Sakai GET /sakai-login-tool/container (200 response)

 ADFS POST /adfs/ls/

 Sakai POST /sakai-login-tool/container/saml/SSO (302 response)

 Sakai GET /sakai-login-tool/container/saml/container (302 response)

 Sakai GET /portal

Click on the Logout button on your development system. The sequence of requests should be:

 Sakai GET /portal/logout

 Sakai GET /sakai-login-tool/container/saml/logout

 ADFS GET /adfs/ls/?SAMLRequest=…

 Sakai GET /sakai-login-tool/container/saml/SingleLogout?SAMLResponse=… (302 response)

 Sakai GET /portal/

If you click on “ADFS Login” again, you should be prompted for crentials from ADFS, i.e. you should

be properly logged out by the previous step.

Troubleshooting
To inspect the SAML requests and responses between systems, use Chrome Inspector (or similar in

other browsers) to look at the POST and GET requests.

For POST requests, look at the SAMLRequest field in the POST form data. You can display the SAML

XML using https://www.samltool.com/decode.php (as the form data is compressed).

For GET requests, look at the SAMLRequest URL parameter. To display the SAML, first URLDecode

the string (e.g. https://urldecode.org/) then use https://www.samltool.com/decode.php

For Firefox, the https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/ may be helpful.

The most likely issue is that the SAMLResponse after authentication (posted to /sakai-login-

tool/container/saml/SSO) does not include a valid username. A valid response should include an

AttributeStatement like this:

where the UPN is the Sakai username (EID) that has been authenticated.

https://www.samltool.com/decode.php
https://urldecode.org/
https://www.samltool.com/decode.php
https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

